A RADON-NIKODYM THEOREM FOR COMPLETELY MULTI-POSITIVE LINEAR MAPS AND ITS APPLICATIONS

MARIA JOIȚĂ

March 29, 2006

Abstract

A completely n-positive linear map from a locally C^*-algebra A to another locally C^*-algebra B is an $n \times n$ matrix whose elements are continuous linear maps from A to B and which verifies the condition of completely positivity. In this paper we prove a Radon-Nikodym type theorem for strict completely n-positive linear maps which describes the order relation on the set of all strict completely n-positive linear maps from a locally C^*-algebra A to a C^*-algebra B, in terms of a self-dual Hilbert C^*-module structure induced by each strict completely n-positive linear map. As applications of this result we characterize the pure completely n-positive linear maps from A to B and the extreme elements in the set of all identity preserving completely n-positive linear maps from A to B. Also we determine a certain class of extreme elements in the set of all identity preserving completely positive linear maps from A to $M_n(B)$.

MSC: 46L05; 46L08

1 Introduction and preliminaries

The concept of matricial order plays an important role to understand the infinite-dimensional non-commutative structure of operator algebras. Completely positive maps, as the natural ordering attached to this structure have been studied extensively [1, 2, 5, 4, 7, 8, 9, 10, 11, 15, 16, 18, 19].

Given a C^*-algebra A we denote by $M_n(A)$ the C^*-algebra of all $n \times n$ matrices with elements in A.

Definition 1.1 A completely positive map from a C^*-algebra A to another C^*-algebra B is a linear map $\rho : A \to B$ such that the linear map $\rho_n : M_n(A) \to M_n(B)$...
$M_n(A) \rightarrow M_n(B)$ defined by

$$\rho_n \left([a_{ij}]_{i,j=1}^n \right) = [\rho(a_{ij})]_{i,j=1}^n$$

is positive for each positive integer n.

In 1955, Stinespring [18] showed that a completely positive linear map ρ from a C^*-algebra A to $L(H)$, the C^*-algebra of all bounded linear operators on a Hilbert space H, induces a representation Φ_ρ of A on another Hilbert space H_ρ. Moreover,

$$\rho(a) = V_\rho^*\Phi_\rho(a)V_\rho$$

for all $a \in A$ and for some bounded linear operator V_ρ from H to H_ρ.

In 1969, Arveson [1] proved a Radon-Nikodym type theorem which gives a description of the order relation in the set of all completely positive linear maps from A to $L(H)$ in terms of the Stinespring representation associated with each completely positive linear map. The gist of the proof of this result is the fact that any bounded linear operator on a Hilbert space is adjointable.

Hilbert C^*-modules are generalizations of Hilbert spaces by allowing the inner-product to take values in a C^*-algebra rather than in the field of complex numbers.

Definition 1.2 A pre-Hilbert A-module is a complex vector space E which is also a right A-module, compatible with the complex algebra structure, equipped with an A-valued inner product $\langle \cdot, \cdot \rangle : E \times E \rightarrow A$ which is \mathbb{C}- and A-linear in its second variable and satisfies the following relations:

1. $\langle \xi, \eta \rangle^* = \langle \eta, \xi \rangle$ for every $\xi, \eta \in E$;
2. $\langle \xi, \xi \rangle \geq 0$ for every $\xi \in E$;
3. $\langle \xi, \xi \rangle = 0$ if and only if $\xi = 0$.

We say that E is a Hilbert A-module if E is complete with respect to the topology determined by the norm $\| \cdot \|$ given by $\| \xi \| = \sqrt{\langle \xi, \xi \rangle}$.

A C^*-algebra A is a Hilbert C^*-module over A with the inner-product defined by $\langle a, b \rangle = a^*b$ for a and b in A.

Given two Hilbert A-modules E and F, the Banach space of all bounded module homomorphisms from E to F is denoted by $B_A(E, F)$. The subset of $B_A(E, F)$ consisting of all adjointable module homomorphisms from E to F (that is, $T \in B_A(E, F)$ such that there is $T^* \in B_A(F, E)$ satisfying

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle$$

for all $x \in E$ and $y \in F$) is denoted by $B^*_A(E, F)$.
\[\langle \eta, T\xi \rangle = (T^*\eta, \xi) \] for all \(\xi \in E \) and for all \(\eta \in F \) is denoted by \(\mathcal{L}_A(E, F) \).

We will write \(\mathcal{B}_A(E) \) for \(\mathcal{B}_A(E, E) \) and \(\mathcal{L}_A(E) \) for \(\mathcal{L}_A(E, E) \).

In general, \(\mathcal{L}_A(E, F) \neq \mathcal{B}_A(E, F) \). So the theory of Hilbert \(C^* \)-modules is different from the theory of Hilbert spaces.

The Banach space \(E^\# \) of all bounded module homomorphisms from \(E \) to \(A \) becomes a right \(A \)-module with the action of \(A \) on \(E^\# \) defined by \((aT)(\xi) = a^*(T^*\xi) \) for \(a \in A, T \in E^\# \) and \(\xi \in E \). We say that \(E \) is self-dual if \(E^\# = E \) as right \(A \)-modules.

If \(E \) and \(F \) are self-dual, then \(\mathcal{B}_A(E, F) = \mathcal{L}_A(E, F) \) [16, Proposition 3.4].

Suppose that \(A \) is a \(W^* \)-algebra. Then the \(A \)-valued inner-product on \(E \) extends to an \(A \)-valued inner-product on \(E^\# \) and in this way \(E^\# \) becomes a self-dual Hilbert \(A \)-module [16, Theorem 3.2]. Moreover, any bounded module homomorphism \(T \) from \(E \) to \(F \) extends uniquely to a bounded homomorphism \(\widetilde{T} \) from \(E^\# \) to \(F^\# \) [16, Proposition 3.6].

A representation of a \(C^* \)-algebra \(A \) on a Hilbert \(C^* \)-module \(E \) over a \(C^* \)-algebra \(B \) is a \(* \)-morphism \(\Phi \) from \(A \) to \(\mathcal{L}_B(E) \).

Paschke [16] showed that a completely positive map from a unital \(C^* \)-algebra \(A \) to another unital \(C^* \)-algebra \(B \) induces a representation of \(A \) on a Hilbert \(B \)-module which generalizes the GNS construction and he extended the Arveson’s results for completely positive maps from a unital \(C^* \)-algebra \(A \) to a \(W^* \)-algebra \(B \).

In 1996, Tsui [19] proved a Radon-Nikodym type theorem for completely positive maps between unital \(C^* \)-algebras and using this theorem he obtained characterizations of the pure elements and the extreme points in the set of all identity preserving completely positive maps from a unital \(C^* \)-algebra \(A \) to another unital \(C^* \)-algebra \(B \) in terms of a self-dual Hilbert module structure induced by each completely positive map. To prove these facts he used the following construction.

Construction 1.3 ([15, 16, 19]) Let \(E \) be a Hilbert \(C^* \)-module over a \(C^* \)-algebra \(B \). The algebraic tensor product \(E \otimes_{\text{alg}} B^{**} \), where \(B^{**} \) is the enveloping \(W^* \)-algebra of \(B \), becomes a right \(B^{**} \)-module if we define \((\xi \otimes b) c = \xi \otimes bc \), for \(\xi \in E \), and \(b, c \in B^{**} \).

The map \([,] : (E \otimes_{\text{alg}} B^{**}) \times (E \otimes_{\text{alg}} B^{**}) \to B^{**} \) defined by

\[
\left[\sum_{i=1}^{n} \xi_i \otimes b_i, \sum_{j=1}^{m} \eta_j \otimes c_j \right] = \sum_{i=1}^{n} \sum_{j=1}^{m} b_i^* \langle \xi_i, \eta_j \rangle c_j
\]
is a B^{**}-valued inner-product on $E \otimes_{\text{alg}} B^{**}$ and the quotient module $E \otimes_{\text{alg}} B^{**}/N_E$, where $N_E = \{ \zeta \in E \otimes_{\text{alg}} B^{**}; [\zeta, \zeta] = 0 \}$, becomes a pre-Hilbert B^{**}-module. The Hilbert C^*-module $E \otimes_{\text{alg}} B^{**}/N_E$ obtained by the completion of $E \otimes_{\text{alg}} B^{**}/N_E$ with respect to the norm induced by the inner product $[\cdot, \cdot]$ is called the extension of E by the C^*-algebra B^{**}. Moreover, E can be regarded as a B-submodule of $E \otimes_{\text{alg}} B^{**}/N_E$, since the map $\xi \mapsto \xi \otimes 1 + N_E$ from E to $E \otimes_{\text{alg}} B^{**}/N_E$ is an isometric inclusion.

The self-dual Hilbert B^{**}-module $(E \otimes_{\text{alg}} B^{**}/N_E)^\#$ is denoted by \tilde{E}, and we can consider E as embedded in \tilde{E} without making distinction.

Let $T \in \mathcal{B}_B(E, F)$. For $b_1, \ldots, b_m \in B^{**}$ and ξ_1, \ldots, ξ_m in E we denote by b the element in $(B^{**})^m$ whose components are b_1, \ldots, b_m, by X the matrix in $M_n(B^{**})$ whose the (i, j)-entry is $\langle \xi_i, \xi_j \rangle$ and by X_T the matrix in $M_n(B^{**})$ whose the (i, j)-entry is $\langle T \xi_i, T \xi_j \rangle$. By Lemma 4.2 in [14], $0 \leq X_T \leq \|T\| X$. Identifying $M_n(B^{**})$ with $L_{B^{**}}((B^{**})^n)$, we have

$$\left[\sum_{i=1}^m T \xi_i \otimes b_i, \sum_{i=1}^m T \xi_i \otimes b_i \right] = \sum_{i,j=1}^m b_i^* \langle T \xi_i, T \xi_j \rangle b_j = \langle b, X_T b \rangle$$

$$\leq \|T\| \langle b, Xb \rangle = \|T\| \left[\sum_{i=1}^m \xi_i \otimes b_i, \sum_{i=1}^m \xi_i \otimes b_i \right].$$

Therefore T extends uniquely to a bounded module homomorphism \widehat{T} from $E \otimes_{\text{alg}} B^{**}/N_E$ to $F \otimes_{\text{alg}} B^{**}/N_F$ such that

$$\widehat{T} \left(\sum_{i=1}^m \xi_i \otimes b_i \right) = \sum_{i=1}^m T \xi_i \otimes b_i$$

and by Proposition 3.6 in [16], this extends uniquely to a bounded module homomorphism \bar{T} from \tilde{E} to \tilde{F} such that $\|T\| = \|\bar{T}\|$.

Remark 1.4 Any element $T \in \mathcal{B}_B(E, F)$ extends uniquely to an element $\bar{T} \in \mathcal{B}_{B^{**}}(\tilde{E}, \tilde{F})$ such that $\|T\| = \|\bar{T}\|$. Moreover, $\bar{T} \bar{S} = \bar{T} \bar{S}$ for all $T \in \mathcal{B}_B(E, F)$ and $S \in \mathcal{B}_B(F, E)$, and if $T \in \mathcal{L}(E, F)$, then $\bar{T}^* = \bar{T}^*$.

\[4\]
Remark 1.5 Let $T \in \mathcal{B}_B(E, E^\#)$. We extend T to an element $\tilde{T} \in \mathcal{B}_B((E \otimes_{\text{alg}} B^{**})/N_E, \tilde{E})$ by

$$
\left[T \left(\sum_{i=1}^{n} \xi_i \otimes b_i \right) , \sum_{j=1}^{m} \eta_i \otimes c_j \right] = \sum_{i=1}^{n} \sum_{j=1}^{m} b_i^* \left[T \xi_i, \eta_j \right] c_j
$$

and then extend it again to an element $\tilde{T} \in \mathcal{B}_B(\tilde{E})$ such that $\|T\| = \|\tilde{T}\|$ [16, Proposition 3.6].

Remark 1.6 A representation Φ of a C^*-algebra A on a Hilbert C^*-module E over a C^*-algebra B induces a representation $\tilde{\Phi}$ of A on \tilde{E} defined by $\tilde{\Phi}(a) = \tilde{\Phi}(a)$ for all $a \in A$.

Remark 1.7 Any completely positive linear map ρ from A to B induces a representation $\tilde{\Phi}^\rho$ of A on a self-dual Hilbert B^{**}-module \tilde{E}_ρ.

Locally C^*-algebras are generalizations of C^*-algebras. Instead of being given by a single norm, the topology on a locally C^*-algebra is defined by a directed family of C^*-seminorms. In fact a locally C^*-algebra is an inverse limit of C^*-algebras.

Definition 1.8 A locally C^*-algebra is a complete complex Hausdorff topological $*$-algebra A whose topology is determined by its continuous C^*-seminorms in the sense that the net $\{a_i\}_{i \in I}$ converges to 0 if and only if the net $\{p(a_i)\}_{i \in I}$ converges to 0 for all continuous C^*-seminorm p on A.

If A is a locally C^*-algebra and $S(A)$ is the set of all continuous C^*-seminorms on A, then for each $p \in S(A)$, $A_p = A/\ker p$ is a C^*-algebra in the norm induced by p. The canonical map from A onto A_p is denoted by π_p for each $p \in S(A)$. For $p, q \in S(A)$ with $q \leq p$ there is a unique morphism of C^*-algebras π_{pq} from A_p onto A_q such that $\pi_{pq}(\pi_p(a)) = \pi_q(a)$ for all $a \in A$. Moreover, $\{A_p; \pi_{pq}\}_{p,q \in S(A), p \geq q}$ is an inverse system of C^*-algebras, and A can be identified with $\lim_{\leftarrow p} A_p$. Clearly, any C^*-algebra is a locally C^*-algebra.

The terminology ”locally C^*-algebra” is due to Inoue [6]. In the literature, locally C^*-algebras have been given different name such as b^*-algebras, m-convex-C^*-algebras, LMC^*-algebras [3] or pro-C^*-algebras [17]. Such important concepts as Hilbert C^*-modules, adjointable operators, (completely) positive linear maps, (completely) multi-positive linear maps can be
defined with obvious modifications in the framework of locally \(C^* \)-algebras and many results from the theory of \(C^* \)-algebras are still valid. The proofs are not always straightforward. Thus, in [3] it is proved that a continuous positive functional \(\rho \) on a locally \(C^* \)-algebra \(A \) induces a representation of \(A \) on a Hilbert space \(H \) which extends the GNS construction, and moreover, the representation of \(A \) induced by \(\rho \) is irreducible if and only if \(\rho \) is pure. In [2], Bhatt and Karia extend the Stinespring construction for completely positive linear maps from a locally \(C^* \)-algebra \(A \) to \(L(H) \).

If \(A \) is a locally \(C^* \)-algebra, then the set \(M_n(A) \) of all \(n \times n \) matrices over \(A \) with the algebraic operations and the topology obtained byreplying it as a direct sum of \(n^2 \) copies of \(A \) is a locally \(C^* \)-algebra.

Definition 1.9 ([4], [9]). A completely \(n \)-positive map from a locally \(C^* \)-algebra \(A \) to another locally \(C^* \)-algebra \(B \) is an \(n \times n \) matrix \([\rho_{ij}]_{i,j=1}^n \) whose elements are continuous linear maps from \(A \) to \(B \) such that the map \(\rho \) from \(M_n(A) \) to \(M_n(B) \) defined by

\[
\rho \left([a_{ij}]_{i,j=1}^n \right) = [\rho_{ij} (a_{ij})]_{i,j=1}^n
\]

is completely positive.

Definition 1.10 ([9]). A completely \(n \)-positive map \([\rho_{ij}]_{i,j=1}^n \) from \(A \) to \(L_B(E) \), where \(E \) is a Hilbert module over a \(C^* \)-algebra \(B \) is strict if for some approximate unit \(\{e_\lambda\}_{\lambda \in \Lambda} \) for \(A \), the nets \(\{\rho_{ii} (e_\lambda)\}_{\lambda \in \Lambda}, i \in \{1, ..., n\} \) are strictly Cauchy in \(L_B(E) \) (that is, the nets \(\{\rho_{ii} (e_\lambda) \xi\}_{\lambda \in \Lambda}, i \in \{1, ..., n\} \) are Cauchy in \(E \) for each \(\xi \in E \)).

Remark 1.11 If \(A \) is unital or \(E \) is a Hilbert space, then any completely \(n \)-positive map from \(A \) to \(L(E) \) is strict.

In [9], we extend the KSGNS (Kasparov, Stinespring, Gel’fand, Naimark, Segal) construction for strict completely multi-positive linear maps between locally \(C^* \)-algebras.

Theorem 1 ([9]). Let \(A \) be a locally \(C^* \)-algebras, let \(E \) be a Hilbert module over a \(C^* \)-algebra \(B \) and let \(\rho = [\rho_{ij}]_{i,j=1}^n \) be a strict completely \(n \)-positive map from \(A \) to \(L_B(E) \).

1. There is a representation \(\Phi_\rho \) of \(A \) on a Hilbert \(B \)-module \(E_\rho \) and there are \(n \) elements \(V_{\rho,1}, ..., V_{\rho,n} \) in \(L_B(E_\rho, E_\rho) \) such that
(a) $\rho_{ij}(a) = V^*_{\rho,i} \Phi_{\rho}(a) V_{\rho,j}$ for all $a \in A$ and for all $i, j \in \{1, \ldots, n\}$;
(b) $\{\Phi_{\rho}(a)V_{\rho,i}x; a \in A, x \in E, 1 \leq i \leq n\}$ spans a dense subspace of E_{ρ}.

2. If Φ is another representation of A on a Hilbert B-module F and W_1, \ldots, W_n are n elements in $L_B(E, F)$ such that
(a) $\rho_{ij}(a) = W^*_i \Phi(a) W_j$ for all $a \in A$ and for all $i, j \in \{1, \ldots, n\}$;
(b) $\{\Phi(a)W_i x; a \in A, x \in E, 1 \leq i \leq n\}$ spans a dense subspace of F,
there is a unitary operator $U \in L_B(E_{\rho}, F)$ such that
i. $\Phi(a)U = U\Phi_{\rho}(a)$ for all $a \in A$; and
ii. $W_i = UV_{\rho,i}$ for all $i \in \{1, \ldots, n\}$.

The $n + 2$ tuple $(\Phi_{\rho}, E_{\rho}, V_{\rho,1}, \ldots, V_{\rho,n})$ is called the KSGNS construction associated with ρ.

In [10], we prove a Radon-Nikodym type theorem for completely multi-positive linear maps from a locally C^*-algebra A to $L(H)$ and we characterize the pure elements and the extreme points in the set of all identity preserving completely multi-positive linear maps from A to $L(H)$ in terms of the representation of A induced by each completely multi-positive linear map. Also, we determine a certain class of extreme points in the set of all identity preserving completely positive linear maps from A to $M_n(L(H))$. In this talk, we will extend the results from [10] for completely multi-positive linear maps from a locally C^*-algebra A to a C^*-algebra B.

2 The Radon-Nikodym theorem for completely n-positive linear maps

Throughout this section, we assume that A is a locally C^*-algebra, B is a C^*-algebra and E is a Hilbert C^*-module over B. We will denote by $SCP^n_\infty(A, L_B(E))$ the set of all strict completely n-positive linear maps from A to $L_B(E)$ and by $CP^n_\infty(A, L_B(E))$ the set of all completely positive linear maps from A to $L_B(E)$.

Proposition 2.1 ([4],[10]) There is a bijection S from the set $CP^n_\infty(A, B)$ of all completely n-positive maps from A to B onto the set $CP^n_\infty(A, M_n(B))$ of all completely positive maps from A to $M_n(B)$ defined by

$$S\left([\rho_{ij}]_{i,j=1}^n \right)(a) = [\rho_{ij}(a)]_{i,j=1}^n$$

for all $a \in A$.

7
which preserves the order relation.

For an element \(T \in \mathcal{L}_{B^{**}}(E) \) we denotes by \(T|_E \) the restriction of the map \(T \) on \(E \).

Let \(\rho \in SCP^\infty(A, \mathcal{L}_B(E)) \). We denote by \(C(\rho) \) the \(C^* \)-subalgebra of \(\mathcal{L}_{B^{**}}(E_\rho) \) generated by \(\{ T \in \mathcal{L}_{B^{**}}(E_\rho); T\widetilde{\Phi}_\rho(a) = \widetilde{\Phi}_\rho(a) T, \widetilde{V}_{\rho,j}^* T \Phi_\rho(a) \widetilde{V}_{\rho,i} \mid_E \in \mathcal{L}_B(E) \text{ for all } a \in A \text{ and for all } i, j \in \{1, \ldots, n\} \} \).

Remark 2.2 If \(T \) is an element in \(C(\rho) \), then \(T|_{E_\rho} \in \mathcal{B}_B(E_\rho, E_\rho^*) \), since

\[
\langle T\Phi_\rho(a) V_{\rho,j} \xi, \Phi_\rho(b) V_{\rho,i} \eta \rangle = \langle T\widetilde{\Phi}_\rho(a) \widetilde{V}_{\rho,j} \xi, \widetilde{\Phi}_\rho(b) \widetilde{V}_{\rho,i} \eta \rangle \in B
\]

for all \(a, b \in A \), for all \(\xi, \eta \in E \) and for all \(i, j \in \{1, \ldots, n\} \) and since \(\{ \Phi_\rho(a) V_{\rho,i} \xi; a \in A, \xi \in E, 1 \leq i \leq n \} \) spans a dense submodule of \(E_\rho \).

Lemma 2.3 Let \(T \in C(\rho) \). If \(T \) is positive, then the map \(\rho_T \) from \(M_n(A) \) to \(M_n(\mathcal{L}_B(E)) \) defined by

\[
\rho_T(\begin{bmatrix} a_{ij} \end{bmatrix}_{i,j=1}^n) = \begin{bmatrix} \widetilde{V}_{\rho,i} T \widetilde{\Phi}_\rho(a_{ij}) \widetilde{V}_{\rho,j} \end{bmatrix}_{i,j=1}^n
\]

is a strict completely \(n \)-positive linear map from \(A \) to \(\mathcal{L}_B(E) \).

Proof. It is not difficult to see that \(\rho_T \) is an \(n \times n \) matrix of continuous linear maps from \(A \) to \(\mathcal{L}_B(E) \), the \((i,j)\)-entry of the matrix \(\rho_T \) is the linear map \((\rho_T)_{ij} \) from \(A \) to \(\mathcal{L}_B(E) \) defined by

\[
(\rho_T)_{ij}(a) = \widetilde{V}_{\rho,i} T \widetilde{\Phi}_\rho(a_{ij}) \widetilde{V}_{\rho,j} \mid_E.
\]

Also it is not difficult to check that for all \(a_1, \ldots, a_m \in A \) and for all \(T_1, \ldots, T_m \in M_n(\mathcal{L}_B(E)) \), we have

\[
\sum_{k,l=1}^m T_i^* S(\rho_T) (a_i^* a_k) T_k = \left(\sum_{k,l=1}^m \widetilde{T}_i^* S(\rho_T) (a_i^* a_k) \widetilde{T}_k \right) \bigg|_E = \left(\sum_{l=1}^m M_{T_{\frac{1}{2}}} (a_l) V \widetilde{T}_l \right)^* \left(\sum_{l=1}^m M_{T_{\frac{1}{2}}} (a_l) V \widetilde{T}_l \right) \bigg|_E,
\]

where \(M_{T_{\frac{1}{2}}} (a) = \begin{bmatrix} T_{\frac{1}{2}} \widetilde{\Phi}_\rho(a) & \cdots & T_{\frac{1}{2}} \widetilde{\Phi}_\rho(a) \\ 0 & \cdots & 0 \\ \ddots & \ddots & \ddots \\ 0 & 0 & 0 \end{bmatrix} \) and \(V = \begin{bmatrix} \widetilde{V}_{\rho,1} & \cdots & 0 \\ \vdots & \cdots & \vdots \\ 0 & 0 & \widetilde{V}_{\rho,n} \end{bmatrix} \).

From this fact we conclude that \(S(\rho_T) \in CP^\infty(A, M_n(\mathcal{L}_B(E))) \) and by
Proposition 2.1, \(\rho_T \in CP^n_\infty(A, \mathcal{L}_B(E)) \). To show that \(\rho_T \in SCP^n_\infty(A, \mathcal{L}_B(E)) \), let \(\{e_\lambda\}_{\lambda \in \Lambda} \) be an approximate unit for \(A, \xi \in E \) and \(i \in \{1, \ldots, n\} \). Then

\[
\| (\rho_T)_{ii} (e_\lambda) \xi - (\rho_T)_{ii} (e_\mu) \xi \| = \left\| \overline{V}_{\rho,i} \star (T \overline{\Phi}_\rho(e_\lambda) - \overline{\Phi}_\rho(e_\mu)) \overline{V}_{\rho,i} \xi \right\| \\
\leq \left\| \overline{V}_{\rho,i} \star (\| (\Phi_\rho(e_\lambda) - \Phi_\rho(e_\mu)) \|) \right\| \| \overline{V}_{\rho,i} \xi \|,
\]

and since \(\{\Phi_\rho(e_\lambda)V_{\rho,i} \xi\}_{\lambda \in \Lambda} \) is a Cauchy net in \(E \), the net \(\{(\rho_T)_{ii} (e_\lambda)\}_{\lambda \in \Lambda} \) is strictly Cauchy. Therefore \(\rho_T \in SCP^n_\infty(A, \mathcal{L}_B(E)) \).

Remark 2.4

1. If \(I_{\tilde{E}_\rho} \) is the identity map on \(\tilde{E}_\rho \), then \(\rho_{I_{\tilde{E}_\rho}} = \rho \).
2. If \(T_1 \) and \(T_2 \) are two positive elements in \(C(\rho) \), then \(\rho_{T_1 + T_2} = \rho_{T_1} + \rho_{T_2} \).
3. If \(T \) is a positive element in \(C(\rho) \) and \(\alpha \) is a positive number, then \(\rho_{\alpha T} = \alpha \rho_T \).

Remark 2.5

Let \(T_1 \) and \(T_2 \) be two positive elements in \(C(\rho) \). If \(T_1 \leq T_2 \), then, since

\[
(\rho_{T_2} - \rho_{T_1}) \left[a_{ij} \right]_{i,j=1}^n = \left[\overline{V}_{\rho,i} \star (T_2 - T_1) \overline{\Phi}_\rho(a_{ij}) \overline{V}_{\rho,j} \right]_{i,j=1}^n = \rho_{T_2 - T_1} \left[a_{ij} \right]_{i,j=1}^n
\]

for all \([a_{ij}]_{i,j=1}^n \in M_n(A) \), \(\rho_{T_1} \leq \rho_{T_2} \).

Let \(\rho \in SCP^n_\infty(A, \mathcal{L}_B(E)) \). We denote by \([0, \rho]\) the set of all strict completely \(n \)-positive linear maps \(\theta \) from \(A \) to \(\mathcal{L}_B(E) \) such that \(\theta \leq \rho \) (that is, \(\rho - \theta \in SCP^n_\infty(A, \mathcal{L}_B(E)) \)) and by \([0, I]_{\rho} \) the set of all elements \(T \) in \(C(\rho) \) such that \(0 \leq T \leq I_{\tilde{E}_\rho} \).

Theorem 2.6 The map \(T \rightarrow \rho_T \) from \([0, I]_{\rho}\) to \([0, \rho]\) is an affine order isomorphism.

Proof. By Lemma 2.3 and Remarks 2.4 and 2.5, the map \(T \rightarrow \rho_T \) from \([0, I]_{\rho}\) to \([0, \rho]\) is well-defined and moreover, it is affine. To show that this map is injective, let \(T \in [0, I]_{\rho} \) such that \(\rho_T = 0 \). Then \(\overline{V}_{\rho,i} \star T \overline{\Phi}_\rho(a) \overline{\Phi}_\rho(b) \| E \| = 0 \) for all \(a \in A \) and for all \(i, j \in \{1, 2, \ldots, n\} \), and so

\[
\langle T \overline{\Phi}_\rho(a) V_{\rho,j} \xi, \Phi_\rho(b) V_{\rho,j} \eta \rangle = 0
\]
for all $a, b \in A$ for all $\xi, \eta \in E$ and for all $i, j \in \{1, \ldots, n\}$. Taking into account that $\{\Phi_\rho(a)V_{\rho,i}\xi; a \in A, \xi \in E, 1 \leq i \leq n\}$ spans a dense submodule of E_ρ, from these facts, Remarks 2.2 and 1.5 and we conclude that $T = 0$.

Let $\theta \in [0, \rho]$. In the same way as in the proof of Lemma 3.4 in [10], we show that there is a bounded linear map W from E_ρ to E_θ such that

$$W(\Phi_\rho(a)V_{\rho,i}\xi) = \Phi_\theta(a)V_{\theta,i}\xi.$$

It is not difficult to check that W is a bounded module homomorphism such that $\|W\| \leq 1$, $WV_{\rho,i} = V_{\theta,i}$ for all $i \in \{1, \ldots, n\}$ and $W\Phi_\rho(a) = \Phi_\theta(a)W$ for all $a \in A$. If \tilde{W} is the unique extension of W to a bounded module morphism from E_ρ to E_θ with $\|\tilde{W}\| = \|W\|$, then clearly $0 \leq \tilde{W}^*\tilde{W} \leq I_{E_\rho}$. Moreover, it is easy to check that $\tilde{W}^*\tilde{W}\Phi_\rho(a) = \tilde{\Phi}_\rho(a)\tilde{W}^*\tilde{W}$ for all $a \in A$, and since

$$\tilde{V}_{\rho,i}^*\tilde{W}^*\tilde{\Phi}_\rho(a)\tilde{V}_{\rho,j}^* = \tilde{V}_{\theta,i}^*\tilde{W}^*\tilde{\Phi}_\theta(a)\tilde{V}_{\theta,j}^*$$

for all $a \in A$ and for all $i, j \in \{1, \ldots, n\}$, $\tilde{W}^*\tilde{W} \in [0, I]_\rho$. Let $T = \tilde{W}^*\tilde{W}$. Then clearly, $\theta = \rho_T$ and thus the map $T \to \rho_T$ from $[0, I]_\rho$ to $[0, \rho]$ is surjective. Therefore the map $T \to \rho_T$ is an affine isomorphism from $[0, I]_\rho$ onto $[0, \rho]$ which preserve the order relation.

3 Applications of the Radon-Nikodym theorem

Let A be a locally C^*-algebra, let B be a C^*-algebra and let E be a Hilbert C^*-module over B. A strict completely n-positive linear map ρ from A to $\mathcal{L}_B(E)$ is said to be pure if for every strict completely n-positive linear map θ from A to $\mathcal{L}_B(E)$ with $\theta \leq \rho$, there is a positive number α such that $\theta = \alpha\rho$.

Proposition 3.1 Let $\rho \in SCP^\infty_n(A, \mathcal{L}_B(E))$. Then ρ is pure if and only if $[0, I]_\rho = \{\alpha I_{E_{\rho}}; 0 \leq \alpha \leq 1\}$.

Proof. First we suppose that ρ is pure. Let $T \in [0, I]_\rho$. By Theorem 2.6, $\rho_T \in [0, \rho]$, and since ρ is pure, $\rho_T = \alpha\rho$ for some positive number. From this fact, Remark 2.4 and Theorem 2.6 we deduce that $T = \alpha I_{E_{\rho}}$ for some $0 \leq \alpha \leq 1$.

Conversely, suppose that $[0, I]_\rho = \{\alpha I_{E_{\rho}}; 0 \leq \alpha \leq 1\}$. Let $\theta \in SCP^\infty_n(A, \mathcal{L}_B(E))$ such that $\theta \leq \rho$. By Theorem 2.6, $\theta = \rho_T$ for some $T \in [0, I]_\rho$, and since $T = \alpha I_{E_{\rho}}$ for some positive number α, $\theta = \alpha\rho$ and the proposition is proved.

10
Corollary 3.2. A strict completely n-positive linear map \(\rho \) from \(A \) to \(\mathcal{L}_B(E) \) is pure if and only if \(C(\rho) \) consisting of the scalar multipliers of \(I_{\tilde{E}_\rho} \).

We say that two strict completely \(n \)-positive linear maps \(\rho \) and \(\theta \) from \(A \) to \(\mathcal{L}_B(E) \) are unitarily equivalent if the representations of \(A \) induced by \(\rho \) respectively \(\theta \) are unitarily equivalent.

The following proposition is a generalization of Proposition 4.3 in [10].

Proposition 3.3. Let \(A \) be a unital locally \(C^* \)-algebra, let \(B \) be a \(C^* \)-algebra, let \(E \) be a Hilbert \(B \)-module and let \(\rho \in \text{CP}^{\infty}_n(A, \mathcal{L}_B(E)) \). If \(\rho_{ii}, i \in \{1, \ldots, n\} \) are unitarily equivalent pure unital completely positive linear maps from \(A \) to \(\mathcal{L}_B(E) \) and for all \(i, j \in \{1, \ldots, n\} \) with \(i \neq j \) there is a unitary element \(u_{ij} \) in \(A \) such that \(\rho_{ij}(u_{ij}) = I_E \), then \(\rho \) is pure.

Proof. Let \(i, j \in \{1, \ldots, n\} \) with \(i \neq j \). From

\[
\| \Phi_\rho(u_{ij})V_{\rho,j} - V_{\rho,i} \|^2 = \| V_{\rho,j}^*V_{\rho,j} - \rho_{ij}(u_{ij}) - (\rho_{ij}(u_{ij}))^* + V_{\rho,i}^*V_{\rho,i} \| = 0
\]

we deduce that \(\Phi_\rho(u_{ij})V_{\rho,j} = V_{\rho,i} \). Therefore the sets \(\{ \Phi_\rho(a)V_{\rho,i} \xi; a \in A, \xi \in E \} \) and \(\{ \Phi_\rho(a)V_{\rho,j} \xi; a \in A, \xi \in E \} \) generate the same Hilbert submodule of \(E_\rho \), and since \(E_\rho \) is generated by \(\{ \Phi_\rho(a)V_{\rho,i} \xi; a \in A, \xi \in E, 1 \leq i \leq n \} \), this coincides with \(E_\rho \).

Let \(i \in \{1, \ldots, n\} \) and let \((\Phi_{\rho_{ii}}, E_{\rho_{ii}}, V_{\rho_{ii}}) \) be the KSGNS construction associated with \(\rho_{ii} \). We will show that the representations \(\Phi_\rho \) and \(\Phi_{\rho_{ii}} \) of \(A \) are unitarily equivalent. Since \(\{ \Phi_\rho(a)V_{\rho,i} \xi; a \in A, \xi \in E \} \) spans a dense submodule of \(E_\rho \), \(\{ \Phi_{\rho_{ii}}(a)V_{\rho,i} \xi; a \in A, \xi \in E \} \) spans a dense submodule of \(E_{\rho_{ii}} \) and

\[
\langle \Phi_\rho(a)V_{\rho,i} \xi, \Phi_\rho(b)V_{\rho,i} \eta \rangle = \langle \rho_{ii}(b^*a) \xi, \eta \rangle = \langle V_{\rho_{ii}}^*\Phi_{\rho_{ii}}(b^*a)V_{\rho_{ii}} \xi, \eta \rangle = \langle \Phi_{\rho_{ii}}(a)V_{\rho_{ii}} \xi, \Phi_{\rho_{ii}}(b)V_{\rho_{ii}} \eta \rangle
\]

for all \(a, b \in A \) and for all \(\xi, \eta \in E \), there is a unitary operator \(U_i \) from \(E_{\rho_{ii}} \) to \(E_\rho \) such that \(U_i(\Phi_{\rho_{ii}}(a)V_{\rho_{ii}} \xi) = \Phi_\rho(a)V_{\rho,i} \xi \) [14, Theorem 3.5]. Moreover, \(U_i\Phi_{\rho_{ii}}(a) = \Phi_\rho(a)U_i \) for all \(a \in A \). Then \(\tilde{U}_i \), the unique extension of \(U_i \) to a bounded module homomorphism from \(E_{\rho_{ii}} \) to \(\tilde{E}_\rho \) with \(\| U_i \| = \| \tilde{U}_i \| \), is a unitary element in \(\mathcal{L}_{B^*}(E_{\rho_{ii}}, \tilde{E}_\rho) \).
Let $T \in [0, I]_{\rho_i}$. Then $\tilde{U}_i^* T \tilde{U}_i \in [0, I]_{\rho_i}$, and since ρ_{ii} is pure, by Proposition 3.1, $\tilde{U}_i^* T \tilde{U}_i = \alpha I_{\tilde{E}_{\rho_i}}$ for some positive number α. Consequently, $T = \alpha I_{\tilde{E}_\rho}$ and so ρ is pure.

In the following corollary we determine a class of extreme points in the set of all identity preserving completely positive linear maps from a unital locally C^*-algebra A to the C^*-algebra $M_n(B)$ of all $n \times n$ matrices with elements in the unital C^*-algebra B. This is a generalization of Corollaries 2.7 in [11] and 4.5 in [10].

Corollary 3.4 Let A be a unital locally C^*-algebra, let B be a unital C^*-algebra and let $\rho = [\rho_{ij}]_{i,j=1}^n \in CP^\infty_n(A, B)$. If $\rho_{ii}, i \in \{1, \ldots, n\}$ are unitarily equivalent pure unital completely positive linear maps from A to B and for all $i, j \in \{1, \ldots, n\}$ with $i \neq j$, $\rho_{ij}(1) = 0$ and there is a unitary element u_{ij} in A such that $\rho_{ij}(u_{ij}) = 1$, then the map φ from A to $M_n(B)$ defined by $\varphi(a) = [\rho_{ij}(a)]_{i,j=1}^n$ is an extreme point in the set of all identity preserving completely positive linear maps from A to $M_n(B)$.

Proof. Let φ_1 and φ_2 be two identity preserving completely positive linear maps from A to $M_n(B)$ and let $\alpha \in (0, 1)$ such that $\alpha \varphi_1 + (1 - \alpha) \varphi_2 = \varphi$. Then $\alpha S^{-1}(\varphi_1) + (1 - \alpha) S^{-1}(\varphi_2) = \rho$. From this relation and Propositions 3.3 and 3.1, we conclude that $\alpha S^{-1}(\varphi_1) = \beta_1 \rho$ for some positive number β_1 and $(1 - \alpha) S^{-1}(\varphi_2) = \beta_2 \rho$ for some positive number β_2. Consequently, $\alpha \varphi_1 = \beta_1 \varphi$ and $\varphi_2 = \beta_2 \varphi$. From these facts, since $\varphi_1(1) = \varphi_2(1) = \varphi(1) = I_n$, where I_n is the unity matrix in $M_n(B)$, we deduce that $\alpha = \beta_1$ and $1 - \alpha = \beta_2$. Therefore $\varphi_1 = \varphi_2 = \varphi$, and so φ is an extreme point in the set of all identity preserving completely positive linear maps from A to $M_n(B)$.

Let A be a unital locally C^*-algebra, let B be a C^*-algebra and let E be a Hilbert B-module. We denote by $CP^\infty_n(A, \mathcal{L}_B(E), I)$ the set of all completely n-positive linear maps $\rho = [\rho_{ij}]_{i,j=1}^n$ from A to $\mathcal{L}_B(E)$ such that $\rho_{ii}(1) = I_E$ for all $i \in \{1, \ldots, n\}$ and $\rho_{ij}(1) = 0$ for all $i, j \in \{1, \ldots, n\}$ with $i \neq j$.

The following theorem is a generalization of Theorems 3.8 in [18] and 4.6 in [10].

Theorem 3.5 Let $\rho \in CP^\infty_n(A, \mathcal{L}_B(E), I)$. Then ρ is an extreme point in the set $CP^\infty_n(A, \mathcal{L}_B(E), I)$ if and only if the map $T \rightarrow [\tilde{V}_{\rho,i}^* T \tilde{V}_{\rho,j}]_{i,j=1}^n$ from $C(\rho)$ to $M_n(\mathcal{L}_{B^*}(\tilde{E}))$ is injective.
Proof. Suppose that ρ is an extreme point in the set $CP^n_{\alpha}(A, \mathcal{L}_B(E), I)$ and T is an element in $C(\rho)$ such that $V_{\rho,i}^*TV_{\rho,i} = 0$ for all $i, j \in \{1, ..., n\}$. Since $V_{\rho,j}^*T^*V_{\rho,i} = \left(V_{\rho,i}^*TV_{\rho,j}\right)^*$ for all $i, j \in \{1, ..., n\}$, we can suppose that $T = T^*$. It is not difficult to check that there are two positive numbers α and β such that $\frac{1}{4}I_{E_{\rho}} \leq \alpha T + \beta I_{E_{\rho}} \leq \frac{3}{4}I_{E_{\rho}}$. Moreover, $\beta \in (0, 1)$. Let $T_1 = \frac{\sqrt{3}}{2}T + I_{E_{\rho}}$ and $T_2 = I_{E_{\rho}} - \frac{\alpha}{4}T$. Clearly, $T_k, k \in \{1, 2\}$ are two positive elements in $C(\rho)$. Then $\rho T_k \in CP^n_{\alpha}(A, \mathcal{L}_B(E)), k \in \{1, 2\}$ and since

$$(\rho T_k)_{ij}(1) = \left|V_{\rho,i}^*)T_kV_{\rho,j}\right|_E = \left|V_{\rho,i}^*V_{\rho,j}\right|_E = V_{\rho,i}^*V_{\rho,j} = \begin{cases} I_E & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

for all $i, j \in \{1, ..., n\}$ with $i \neq j$, and $k \in \{1, 2\}, \rho T_k \in CP^n_{\alpha}(A, \mathcal{L}_B(E), I)$ for each $k \in \{1, 2\}$. A simple calculus shows that $\beta \rho T_1 + (1 - \beta) \rho T_2 = \rho$, and since ρ is an extreme point, $\rho T_1 = \rho T_2 = \rho$. But $\rho T_1 = \frac{\sqrt{3}}{2} \rho T + \rho$ and $\rho T_2 = \rho - \frac{\alpha}{4} \rho T$. Therefore $\rho T = 0$ and by Theorem 2.6, $T = 0$.

Conversely, suppose that the map $T \rightarrow \left[V_{\rho,i}^*TV_{\rho,j}\right]_{i,j=1}^n$ from $C(\rho)$ to $M_n(\mathcal{L}_{B^{\alpha}}(E))$ is injective. Let $\theta, \sigma \in CP^n_{\alpha}(A, \mathcal{L}_B(E), I)$ and $\alpha \in (0, 1)$ such that $\alpha \theta + (1 - \alpha) \sigma = \rho$. By Theorem 2.6, there are two elements T_1 and T_2 in $[0, I]_{\rho} \subseteq C(\rho)$, such that $\alpha \theta = \rho T_1$ and $(1 - \alpha) \sigma = \rho T_2$. Then

$$\left|V_{\rho,i}^*T_1V_{\rho,j}\right|_E = (\rho T_1)_{ij}(1) = \alpha \theta_{ij}(1) = \begin{cases} \alpha I_E & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

and

$$\left|V_{\rho,i}^*T_2V_{\rho,j}\right|_E = (\rho T_2)_{ij}(1) = (1 - \alpha) \sigma_{ij}(1) = \begin{cases} (1 - \alpha) I_E & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}.$$
References

DEPARTMENT OF MATHEMATICS
FACULTY OF CHEMISTRY
UNIVERSITY OF BUCHAREST
BD. REGINA ELISABETA NR.4-12
BUCHAREST, ROMANIA
mjoita@fmi.unibuc.ro