SOLUTION TO AMM PROBLEM # 11369

ÁNGEL PLAZA AND JOSÉ MIGUEL PACHECO

Proposed by DONALD KNUTH, Stanford University, Stanford, CA.

Problem . # 11369 Show that for all real \(t \), and all \(\alpha \geq 2 \),

\[e^{\alpha t} + e^{-\alpha t} - 2 \leq (e^t + e^{-t})^\alpha - 2^\alpha. \]

Solution: It is clear that the equality holds for \(t = 0 \) and any \(\alpha \geq 2 \), and also for any real \(t \) and \(\alpha = 2 \). Let us suppose then that \(t \neq 0 \) and \(\alpha > 2 \). Since \(x = e^t > 0 \) in this case, the inequality may be written as

\[x^\alpha + x^{-\alpha} - 2 < \left(x + \frac{1}{x} \right)^\alpha - 2^\alpha. \]

(1)

Also, since \(x \cdot x^{-1} = 1 \) it can be supposed that \(x > 1 \).

Note that if \(g(x) = x^\alpha + x^{-\alpha} \) and \(f(x) = \left(x + \frac{1}{x} \right)^\alpha \), then Eq. (1) may be written as

\[g(x) - g(1) < f(x) - f(1), \]

(2)

or, equivalently,

\[\frac{g(x) - g(1)}{f(x) - f(1)} < 1. \]

(3)

Now, by the Lagrange Theorem, the Left-Hand Side of Eq. (3) is \(\frac{g'(c)}{f'(c)} \), for some real \(c \) such that \(1 < c < x \).

Note that \(\frac{g'(c)}{f'(c)} < 1 \) \(\Leftrightarrow \) \(g'(c) < f'(c) \). That is, using \(x \) instead of \(c \),

\[\alpha x^{\alpha-1} - \alpha \frac{1}{x^{\alpha+1}} < \alpha \left(x + \frac{1}{x} \right)^{\alpha-1} \left(1 - \frac{1}{x^2} \right) \]

(4)

\[x^{\alpha-1} \left[1 - \frac{1}{x^{2\alpha}} \right] < x^{\alpha-1} \left(1 + \frac{1}{x^2} \right)^{\alpha-1} \left(1 - \frac{1}{x^2} \right) \]

(5)

\[\frac{1}{x^2} = y \] gives \(0 < y < 1 \) and Eq. (5) reads:

\[1 - y^{\alpha} < (1 + y)^{\alpha-1}(1 - y) = (1 + y)^{\alpha-1} - y(1 + y)^{\alpha-1} \]

(6)

\[1 - (1 + y)^{\alpha-1} < y^\alpha - y(1 + y)^{\alpha-1} = y \left[y^{\alpha-1} - (1 + y)^{\alpha-1} \right] \]

(7)

Date: October 31, 2008.
Let us consider function $F(y) = y^{\alpha - 1}$. F is strictly convex, since $F''(y) = (\alpha - 1)(\alpha - 2)y^{\alpha - 3} > 0$, for $y > 0$ and $\alpha > 2$. If denote by $\Delta_F(x, y) = \frac{F(y) - F(x)}{y - x}$ the divided difference of function F, then Eq. (8) may be understood as:

\[(9) \quad \frac{\Delta_F(1, 1 + y)}{\Delta_F(y, 1 + y)} > y\]

which is equivalent to

\[(10) \quad \frac{\Delta_F(1, 1 + y)}{\Delta_F(y, 1 + y)} > 1 \iff \Delta_F(1, 1 + y) > \Delta_F(y, 1 + y)\]

Now, we use the following lemma [1]:

Lemma. A function $F : (a, b) \rightarrow \mathbb{R}$ is convex (strictly convex) if and only if its divided difference $\Delta_F(x, y)$ is increasing (strictly increasing) in both variables.

Inequality (10) may be illustrated by the following figure, considering that $\Delta_F(1, 1 + y)$ is the slope of the line passing through points B and C, while $\Delta_F(y, 1 + y)$ is the slope of the line passing through points A and C:

\[y = x^{\alpha - 1}\]

\[y = x\]

Note, also, that for the case $\alpha = 2$, function $y = x^{\alpha - 1}$ into the previous figure is precisely $y = x$ and in this case we have the equality. □

References