Proof Without Words: Sum of Triangular Numbers

ÁNGEL PLAZA
Universidad de Las Palmas de Gran Canaria
Las Palmas, Canarias, Spain
angel.plaza@ulpgc.es

Theorem.

\[T_n = 1 + 2 + \cdots + n = \frac{n(n + 1)}{2} = \left(\begin{array}{c} n+1 \\ 2 \end{array} \right) \Rightarrow \sum_{k=1}^{n} T_k = \frac{n(n + 1)(n + 2)}{6}. \]

Proof.

\[\sum_{k=1}^{n} T_k = \begin{array}{cccccc}
1 & 2 & 3 & \cdots & n \\
T_n & T_3 & T_2 & T_1 & & \\
& 1 & 2 & 3 & & \\
& 1 & 2 & & & \\
& 1 & & & & \\
\end{array} \]

\[3 \sum_{k=1}^{n} T_k = \begin{array}{cccccc}
1 \times n & \cdots & n \times 1 \\
2 \times (n-1) & \cdots & (n-1) \times 1 \\
1 \times (n-1) & \cdots & (n-1) \times (n-1) \\
\end{array} \]

\[\frac{n(n+1)}{2} \]
This proof is close to, and it can be seen as a variation of, Zerger’s proof [1], which also appears on page 94 of Nelsen’s compendium of PWWs [2].

REFERENCES

Summary. The triangular numbers are given by the following explicit formulas:
\[T_n = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} = \binom{n+1}{2} \]. Here it is proved visually that
\[
\sum_{k=1}^{n} T_k = \frac{n(n+1)(n+2)}{6}.
\]

DR. ANGEL PLAZA (MR Author ID: 350023) received his masters degree from Universidad Complutense de Madrid in 1984 and his Ph.D. from Universidad de Las Palmas de Gran Canaria in 1993, where he is a Full Professor in Applied Mathematics. He is interested in mesh generation and refinement, combinatorics and visualization support in teaching and learning mathematics.

From the Files of Past MAGAZINE Editors

As chairman of the MAA’s Publications Committee, Ed Beckenbach asked then MAGAZINE co-editors Lynn Arthur Steen (LAS) and J. Arthur Seebach, Jr. (AS) what ideas they had for improving the MAGAZINE. They wanted to make it more public-oriented, but they realized they had no writers and no audience for such a magazine. Instead, they made some cosmetic changes, like putting something other than the table of contents on the cover, itself a controversial decision.

LAS and AS wanted to have articles start at the top of a page instead of simply starting where the previous article ended; ideally they would start at the top of a right-hand page. They needed some short things (called filler) to insert to fill space at the ends of some articles. At a suggestion of Roger Nelsen, they began including some Proofs without Words as filler. Proofs without Words have been a mainstay of the MAGAZINE ever since.